jueves, 16 de agosto de 2012

Transformadores


Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.


El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, por medio de interacción electromagnética. Está constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente y por lo general enrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado, fabricado bien sea de hierro dulce o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

Diodo LED


Un led es un diodo semiconductor que emite luz. Se usan como indicadores en muchos dispositivos, y cada vez con mucha más frecuencia, en iluminación. Presentado como un componente electrónico en 1962, los primeros ledes emitían luz roja de baja intensidad, pero los dispositivos actuales emiten luz de alto brillo en elespectro infrarrojovisible y ultravioleta.


Cuando un led se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz (correspondiente a la energía del fotón) se determina a partir de la banda de energía del semiconductor. Por lo general, el área de un led es muy pequeña (menor a 1 mm2), y se pueden usar componentes ópticos integrados para formar su patrón de radiación. Los ledes presentan muchas ventajas sobre las fuentes de luz incandescente y fluorescente, principalmente con un consumo de energía mucho menor, mayor tiempo de vida, tamaño más pequeño, gran durabilidad, resistencia a las vibraciones, no es frágil, reduce considerablemente la emisión de calor que produce el efecto invernadero en nuestro planeta, no contienen mercurio (el cual al exponerse en el medio ambiente es altamente venenoso) a comparación de la tecnología fluorescente o de inducción magnética que si contienen mercurio, no crean campos magnéticos altos como la tecnología de inducción magnética con los cuales se crea mayor radiación hacia el ser humano, cuentan con un alto factor de CRI, reducen ruidos en las líneas eléctricas, son especiales para utilizarse con sistemas foto voltaicos (paneles solares) a comparación de cualquier otra tecnología actual, no les afecta el encendido intermitente (es decir pueden funcionar como luces estroboscópicas) y esto no reduce su vida promedio, son especiales para sistemas anti-explosión ya que no es fácil quebrar un diodo emisor de luz (led) y cuentan con una alta fiabilidad. Los ledes con la potencia suficiente para la iluminación de interiores son relativamente caros y requieren una corriente eléctrica más precisa, por su sistema electrónico para funcionar con voltaje alterno y requieren de disipadores de calor cada vez más eficientes a comparación de las bombillas fluorescentes de potencia equiparable.
Los ledes en la actualidad se pueden acondicionar o incorporarse en un porcentaje mayor al 90% de todas las tecnologías de iluminación actuales, por ejemplo: en casas, oficinas, industrias, edificios, restaurantes, arenas, teatros, plazas comerciales, gasolineras, calles y avenidas, estadios (en algunos casos por las dimensiones del estadio no es posible porque quedarían espacios obscuros), conciertos, discotecas, casinos, hoteles, carreteras, luces de tráfico o de semáforos, señalamientos viales, universidades, colegios, escuelas, estacionamientos, aeropuertos, sistemas híbridos, celulares, pantallas de casa o domésticas, monitores, cámaras de monitoreo, supermercados, en transportes (bicicletas, motocicletas, automóviles, camiones tráilers, etc.), en linternas de mano, para crear pantallas electrónicas de led (tanto informativas como publicitarias) y para cuestiones arquitectónicas especiales o de arte culturales. Todas estas aplicaciones se dan gracias a su diseño compacto. Los ledes tienen la ventaja de encenderse muy rápido (aproximadamente en dos segundos) a comparación de las luminarias de alta potencia como lo son las luminarias de alta intensidad de vapor de sodio, aditivos metálicos, halogenuro o halogenadas y demás sistemas con tecnología incandescente. La excelente variedad de colores que producen los ledes ha permitido el desarrollo de nuevas pantallas electrónicas de texto monocromáticas, bicolores, tricolores y RGB (pantallas a todo color) con la habilidad de reproducción de vídeo para fines publicitarios, informativos o tipo indicadores. Y debido a sus altas frecuencias de operación son también útiles en tecnologías avanzadas de comunicaciones. Los ledes infrarrojos también se usan en unidades de control remoto de muchos productos comerciales incluyendo televisores, cámaras de monitoreo, reproductores de DVD, entre otras aplicaciones domésticas.

Fusibles


Los fusibles son pequeños dispositivos que permiten el paso constante de la corriente eléctrica hasta que ésta supera el valor máximo permitido. Cuando aquello sucede, entonces el fusible, inmediatamente, cortará el paso de la corriente eléctrica a fin de evitar algún tipo de accidente, protegiendo los aparatos eléctricos de "quemarse" o estropearse..
El mecanismo que posee el fusible para cortar el paso de la electricidad consta básicamente en que, una vez superado el valor establecido de corriente permitido, el dispositivo se derrite, abriendo el circuito, lo que permite el corte de la electricidad. De no existir este mecanismo, o debido a su mal funcionamiento, el sistema se recalentaría a tal grado que podría causar, incluso, un incendio.
Por lo general, los fusibles están instalados entre la fuente de alimentación eléctrica y el circuito que se quiere electrificar, y consta de un hilo que, a medida que la corriente eléctrica pasa, se calienta. Por lo tanto, cuando uno de estos dispositivos se quema, entonces significa que alguna parte del aparato ha consumido más electricidad de la necesaria, siendo necesaria una revisión completa de éste y una reposición del fusible quemado por uno de las mismas características.


Existen varios tipos de fusibles, sin embargo, entre los que se utilizan con mayor frecuencia encontramos a los denominados “desnudos”. Este tipo de fusible se caracteriza por estar conformado por un hilo metálico, el que generalmente es de plomo, que, como ya se había mencionado, se derrite por efecto del calor causado por el paso de la corriente eléctrica. Por otra parte, encontramos el fusible “Encapsulado de vidrio”, aquel que es frecuentemente utilizado en aparatos electrónicos. En tercer lugar, el “Tapón enroscable” es un tipo de fusible conformado por un cilindro de porcelana, o algún material similar, que cuenta con una camisa enroscable que tiene por función permitir la conexión con el circuito eléctrico. De este modo, el fusible queda instalado en el interior del equipo, sujeto por tornillos y cubierto por una tapa roscada. Por último, el fusible denominado “cartucho” es aquel que se caracteriza por estar fabricado en base a un material aislante. Sobre esta base aislante se ponen unos soportes metálicos que sirven para meter el cartucho a presión.

jueves, 2 de agosto de 2012

Disipador de Calor


Un disipador de calor es un instrumento que se utiliza para bajar la temperatura de algunos componentes electrónicos.

Su funcionamiento se basa en la segunda ley de la termodinámica, transfiriendo el calor de la parte caliente que se desea disipar al aire. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente.
En los dispositivos electrónicos se suelen usar para evitar un aumento de la temperatura en algunos componentes. Por ejemplo, se emplea sobre transistores en circuitos de potencia para evitar que las altas temperaturas puedan llegar a quemarlos.

Un disipador extrae el calor del componente que refrigera y lo evacúa al exterior, normalmente al aire. Para ello es necesaria una buena conducción de calor a través del mismo, por lo que se suelen fabricar de aluminio por su ligereza, pero también de cobre, mejor conductor del calor, cabe aclarar que el peso es importante ya que la tecnología avanza y por lo tanto se requieren disipadores mas ligeros y con eficiencia suficiente para la transferencia de calor hacia el exterior.